Opening up Space with Fractionation

Paul Collopy University of Alabama in Huntsville 27 August 2015 paul.collopy "at" uah.edu **Opening up Space with Fractionation**

- Valuation
- Standards
 - Cluster Communications
 - Cluster Flight

Valuation

• What if space were inexpensive?

• Why isn't space inexpensive?

Valuation

What if space were inexpensive?

DEMAND

• Why isn't space inexpensive?

SUPPLY

Demand

Pareto Analysis

Demand Curve

Supply and Demand

Supply Curve for an innovative market

Supply and Demand

Example Simulation (Space Internet)

Plot of Pro Forma Profit and Loss Statment

Value of Fractionation

NPV

Transition

- Cost reduction from \$100K / kg to \$50K / kg*
- 2. Reduce cost with production volume

Low Cost Spacecraft from MMA Design, Boulder CO

* Manufacturing (10th unit) plus launch costs

Barriers to Entry

Uncertainty

• Volume

Barriers to Entry

Uncertainty
 – reduced by standards

- Volume
 - market applications

Valuation

Value Modeling (design objective function)

 math function: system attributes in, score out
 example: Pro Forma Profit and Loss (\$)

 Value Models are invariant under affine xforms

 Design does not depend (much) on how big the market becomes, any of these scenarios will do

v(attributes) ~ α v(attributes) + β

Standards

- The barrier to new space
 - Cluster Communications
 - Cluster Flight
 - Launcher interfaces
- Last chance for optimization
 - Optimum cluster flight pattern
 - Optimum propellant sizing

Conclusion

- New Space Architectures:
 - Great rewards
 - High risk
 - uncertainty = lack of information
- Researchers can break the logjam and open space to 100x applications