A Concept of Nanosatellite Small Fleet for Earth Observation

Prof. Janusz Narkiewicz
jnark@meil.pw.edu.pl

Sebastian Topczewski
stopczewski@meil.pw.edu.pl

Mateusz Sochacki
msochacki@meil.pw.edu.pl
Contents

- Multisatellite missions survey
- Earth Observation systems
- Formation Flying Earth Observation System
- WUT Satellite Simulation Model
- Conclusions
Multisatellite missions survey

Extensive research of Distributed Satellite Systems (DSS) missions utilizing small satellites, have been performed. The survey consisted of 79 missions (41 past and current) and identified:

- Only 3 Fractionated spacecraft missions (all future or planned)
- Only 6 missions involving the concept of Federated Spacecraft System

Small platforms used in multisatellite missions
- Nano: 78%
- Micro: 9%
- Pico: 4%
- Femto: 1%
- Multiple: 8%

Status of small platform multisatellite missions
- Future: 38%
- Current: 24%
- Past: 38%
A Concept of Nanosatellite Small Fleet for Earth Observation

Multisatellite missions survey

- Almost half number of nanosatellites up to now were part of multisatellite missions.
- Small number of formation flying missions related to Earth Observation.
- No formation flying missions related to satellite imagery were identified.
Earth Observation systems

- Frequent (e.g. daily) data updates (low revisit time) requires the use of multiple satellites (constellation).
- High measurement resolution \rightarrow narrow field of view
- Narrow field of view \rightarrow more satellites to achieve daily coverage
- Some of the gathered data may be useless due to:
 - The mapped area is not important for the user
 - The mapped area have not changed since last visit
 - The mapped area is covered by clouds
Earth Observation systems

☐ Data may be enhanced by proper selection of target point.

☐ Selection of target point → decision making process (algorithm).

☐ Decision making algorithm requires input data
 ☐ acquired during previous measurements
 ☐ provided by external source
Earth Observation systems

- Decision making algorithm:

 To decide whether an area should be targeted is to find if it has changed since last visit.

- Requirements:
 - Previously gathered data for comparison.
 - Real time data for comparison.
 - Method of how to decide that a change occurred.

- It seems easy for a human to decide whether an essential change have occurred – it is not so for a computer.
Earth Observation systems

- The detection of change can be accomplished using coarse data only.

- Coarse measurement used to determine the change only – *There is something there.*

- Fine measurement provides actual data – *It is a tank.*
Conventional EO system

- Two uncoupled satellites on Low Earth Orbit.
- Both satellites pass over the same area within several hours/days.
- First satellite performs coarse measurement (ex. low resolution photo).
- The acquired data is sent to the ground and analyzed.
- The target for fine measurement is selected and the commands are sent to the second satellite.
- The second satellite flies over the same area and acquires narrow field of view, fine measurement (ex. high resolution photo).
- The acquired data is sent to the ground station.
Conventional EO system

Data acquisition timeline:

- Corse measurement acquisition by 1st satellite
- 1st satellite awaiting for ground station contact
- Ground station contact with 1st satellite
- Coarse measurement downlink
- Corse data analysis, decision making algorithm
- Target for fine measurement selected
- Awaiting for contact with 2nd satellite
- Command uplink to 2nd satellite
- 2nd satellite awaiting for target location flyover
- Fine measurement acquisition by 2nd satellite
- 2nd satellite awaiting for ground station contact
- Ground station contact with 2nd satellite
- Fine measurement downlink
Conventional EO system

Delay between measurements – data relevance:

- change caused by moving object

- Reference measurement

- Coarse measurement
 - Change detected – area for fine measurement selected

- Too long delay between coarse and fine measurement results in useless data
Formation Flying Earth Observation System

- Two satellites in a trailing formation on Low Earth Orbit.
- Both satellites pass over the same area within several seconds/minutes.
- First satellite performs cores measurement (ex. low resolution photo).
- The acquired data is analyzed (on orbit) and the target for fine measurement is selected.
- The second satellite flies over the same area and acquires narrow field of view, fine measurement (ex. high resolution photo).
- The acquired data is sent to the ground station.
- Both satellites communicate through Inter Satellite Link.
Formation Flying Earth Observation System

Data acquisition timeline:

- Corse measurement acquisition by 1st satellite
- Corse data analysis, decision making algorithm
- Target for fine measurement chosen
- Command uplink to 2nd satellite via Inter Satellite Link
- 2nd satellite awaiting for target location flyover
- Fine measurement acquisition by 2nd satellite
- 2nd satellite awaiting for ground station contact
- Ground station contact with 2nd satellite
- Fine measurement downlink
Advantages:

- Shorter acquisition time

- No delay between the acquisition of coarse and fine data – the acquired data will always be relevant.
A Concept of Nanosatellite Small Fleet for Earth Observation

WUT Satellite Simulation Model

- Evaluating the performance of satellite subsystems required for precise formation flying.
- Formulation of requirements for:
 - Attitude and Orbit Control System
 - Inter satellite communication system
Simulation model requirements:

- Model applicable to formation flying LEO satellite mission.
- LEO environment model with relevant orbital perturbations, lighting conditions etc.
- Satellite actuators, sensors and other subsystems models (such as payload, power or communication).

Environment modelling:
- Gravity
 - Non-spherical Earth's gravity
 - Third bodies gravity (Moon, Sun)
- Aerodynamics
 - Satellite aerodynamic properties (free molecular flow)
 - Air density
 - Atmosphere wind
- Solar radiation Pressure
 - Satellite reflective properties
 - Earth's shadow
 - Earth's magnetic field
WUT Satellite Simulation Model

Actuators modelling:
- Thrusters
 - Mainly cold-gas for nanosatellites
 - Influence on satellite's inertia
- Magnetotorquers
- Momentum exchange devices
 - Mainly reaction wheels for nanosatellites

Sensors modelling:
- Accelerometers
- Gyroscopes
- Magnetometers
- Sun and Earth sensors
- Star trackers
- GNSS receivers
 - Allows to determine both position and attitude for Low Earth Orbit satellites
- Other sensors
 - Payload related sensors
 - Cameras for navigation

Satellite modelling in terms of system performance:
- Electrical power sources:
 - e.g. solar arrays, batteries
- Electrical power dumps:
 - e.g. actuators, sensors, payloads, communication
- Data sources:
 - e.g. payloads, sensors, communication system
- Data dumps:
 - e.g. communication system
- Communication with ground station

![Satellite Simulation Model Diagram]

- Data usage
- Data generation
- Electrical power generation
- Electrical power consumption
- Input parameters
- Output parameters
Conclusion

- A concept of formation flying satellites for Earth Observation is proposed.

- Proposed system decreases time of data acquisition and increases the data value.

- The performance of the proposed concept will be analyzed using WUT satellite simulation model.
The paper was prepared within project ONION Operational Network of Individual Observation Nodes funding from the European Community's HORIZON 2020 under grant agreement no. 687490.
Thank you for your attention